Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Hiroyuki Ishida,* Takeo
 Fukunaga and Setsuo Kashino

Department of Chemistry, Faculty of Science, Okayama University, Okayama 700-8530, Japan

Correspondence e-mail:
ishidah@cc.okayama-u.ac.jp

Key indicators

Single-crystal X-ray study
$T=300 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.048$
$w R$ factor $=0.134$
Data-to-parameter ratio $=15.8$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

Benzimidazolium 2-chloro-4-nitrobenzoate

In the title compound, $\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{~N}_{2}{ }^{+} \cdot \mathrm{C}_{7} \mathrm{H}_{3} \mathrm{ClNO}_{4}{ }^{-}$, the cations and anions are connected by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds to afford a 2_{1} helical chain.

Received 2 September 2002 Accepted 4 September 2002 Online 13 September 2002

Comment

The title compound, (I), was investigated as part of a study on $D-\mathrm{H} \cdots A$ hydrogen bonding ($D=\mathrm{N}, \mathrm{O}$ or $\mathrm{C} ; A=\mathrm{N}, \mathrm{O}$ or Cl) in chloro- and nitro-substituted benzoic acid-amine systems (Ishida et al., 2001a,b,c,d,e). In the crystal, the cations and anions are held together by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2) and a weak $\mathrm{C}-\mathrm{H} \cdots \pi$ interaction $[\mathrm{H} 10 \cdots C g 2.93$ (3) \AA, $\mathrm{C} 13 \cdots C g 3.679(3) \AA, \mathrm{C} 13-\mathrm{H} 10 \cdots C g 143.5(19)^{\circ}$, where $C g$ denotes the centroid of the benzene ring C1-C6] (Fig. 1) to afford a 2_{1} helical chain running along the b axis (Fig. 2). A similar helical chain is observed in imidazolium 2-chloro-4nitrobenzoate, giving a chiral crystal (Ishida et al., 2001e). The present salt, however, crystallizes in the centrosymmetric space group $C 2 / c$. Neighboring helical chains related by an inversion center are connected through $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond (Fig. 2, Table 2), and those related by a twofold rotation axis are linked by a $\pi-\pi$ stacking interaction between the aromatic rings $\mathrm{C} 9-\mathrm{C} 14$ of the benzimidazolium ion. The dihedral angle between the aromatic rings is $1.35(11)^{\circ}$, and their interplanar separation and the centroid offset are 3.480 (2) and 0.769 (2) \AA, respectively. The carboxyl group is twisted considerably out of the plane of the benzene ring, probably because of the strong $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds; the dihedral angle between them is $67.15(13)^{\circ}$. This may cause a close contact of $\mathrm{O} 1 \cdots \mathrm{~N} 1^{\text {iii }}, 2.832$ (3) \AA [symmetry code: (iii) $1-x, 1-y,-z]$, between two chains running in antiparallel directions. The $\mathrm{N} \cdots \mathrm{O}$ distance $[2.610$ (3) \AA] in the $\mathrm{N} 2-$ $\mathrm{H} 4 \cdots \mathrm{O} 2$ hydrogen bond is significantly shorter than the average $\mathrm{N} \cdots \mathrm{O}$ distance of 2.878 (3) \AA for an $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ hydrogen bond (Taylor et al., 1984).

(I)

Experimental

Crystals of (I) were obtained by slow evaporation from an acetonitrile solution of benzimidazole and 2-chloro-4-nitrobenzoic acid in a molar ratio of $1: 1$.

Figure 1
ORTEP-3 (Farrugia, 1997) drawing of (I), with the atom-labeling. Displacement ellipsoids of non-H atoms are drawn at the 50% probability level. The $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond and $\mathrm{C}-\mathrm{H} \cdots \pi$ interaction are indicated by a dashed and a dotted line, respectively.

Crystal data

$\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{~N}_{2}{ }^{+} \cdot \mathrm{C}_{7} \mathrm{H}_{3} \mathrm{ClNO}_{4}{ }^{-}$
$M_{r}=319.70$
Monoclinic, C2/c
$a=11.120$ (3) A
$b=14.771$ (3) \AA
$c=17.414$ (3) \AA
$\beta=95.963$ (18) ${ }^{\circ}$
$V=2844.8(11) \AA^{3}$
$Z=8$
$D_{x}=1.493 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $\mathrm{K} \alpha$ radiation
Cell parameters from 25 reflections
$\theta=11.3-12.1^{\circ}$
$\mu=0.29 \mathrm{~mm}^{-1}$
$T=300 \mathrm{~K}$
Prismatic, colorless
$0.50 \times 0.35 \times 0.25 \mathrm{~mm}$
Data collection
Rigaku AFC-5R diffractometer $\omega-2 \theta$ scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.876, T_{\text {max }}=0.930$
6914 measured reflections 3776 independent reflections 2040 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.048$
$w R\left(F^{2}\right)=0.134$
$S=1.00$
3776 reflections
239 parameters
All H -atom parameters refined
$R_{\text {int }}=0.025$
$\theta_{\text {max }}=29.0^{\circ}$
$h=-4 \rightarrow 14$
$k=-4 \rightarrow 19$
$l=-23 \rightarrow 23$
3 standard reflections every 97 reflections intensity decay: 0.8%

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0502 P)^{2}\right. \\
& \quad+1.479 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.01 \\
& \Delta \rho_{\max }=0.20 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.26 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1

Selected geometric parameters (\AA).

$\mathrm{Cl}-\mathrm{C} 2$	$1.731(2)$	$\mathrm{N} 2-\mathrm{C} 8$	$1.320(3)$
$\mathrm{O} 1-\mathrm{C} 7$	$1.228(3)$	$\mathrm{N} 2-\mathrm{C} 14$	$1.388(3)$
$\mathrm{O} 2-\mathrm{C} 7$	$1.242(3)$	$\mathrm{N} 3-\mathrm{C} 8$	$1.313(4)$
$\mathrm{O} 3-\mathrm{N} 1$	$1.223(3)$	$\mathrm{N} 3-\mathrm{C} 9$	$1.395(3)$
$\mathrm{O} 4-\mathrm{N} 1$	$1.222(3)$	$\mathrm{C} 1-\mathrm{C} 7$	$1.520(3)$
$\mathrm{N} 1-\mathrm{C} 4$	$1.473(3)$		

Figure 2
Packing diagram showing two 2_{1} helical chains running in antiparallel directions along the b axis. $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds indicated by dashed and dotted lines, respectively [symmetry codes are as in Table 2].

Table 2
Hydrogen-bonding geometry ($\left({ }^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N2-H4 $\cdots \mathrm{O} 2$	$1.09(3)$	$1.54(3)$	$2.610(3)$	$165(3)$
N3-H6 O^{i}	$0.85(3)$	$1.84(3)$	$2.654(3)$	$160(3)$
$\mathrm{C} 8-\mathrm{H} 5 \cdots \mathrm{O}^{\text {ii }}$		$0.98(3)$	$2.54(2)$	$3.395(4)$

Symmetry codes: (i) $\frac{1}{2}-x, y-\frac{1}{2}, \frac{1}{2}-z$; (ii) $x-\frac{1}{2}, \frac{1}{2}-y, \frac{1}{2}+z$.
H atoms were found in difference Fourier maps and refined isotropically. Refined distances: $\mathrm{C}-\mathrm{H}=0.88$ (3) - 0.98 (3) \AA and $\mathrm{N}-$ $\mathrm{H}=0.86$ (3) -1.09 (3) \AA.

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1990); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: teXsan for Windows (Molecular Structure Corporation, 1997-1999); program(s) used to solve structure: SIR92 (Altomare et al. 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: teXsan for Windows.

X-ray measurements were made at the X-ray Laboratory of Okayama University.

References

Altomare, A., Cascarano, G., Giacovazzo, C., \& Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Ishida, H., Rahman, B. \& Kashino, S. (2001a). Acta Cryst. C57, 876-879. Ishida, H., Rahman, B. \& Kashino, S. (2001b). Acta Cryst. C57, 1450-1453. Ishida, H., Rahman, B. \& Kashino, S. (2001c). Acta Cryst. E57, o627-o629. Ishida, H., Rahman, B. \& Kashino, S. (2001d). Acta Cryst. E57, o630-o632. Ishida, H., Rahman, B. \& Kashino, S. (2001e). Acta Cryst. E57, o744-o745.
Molecular Structure Corporation. (1990). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Molecular Structure Corporation. (1997-1999). teXsan for Windows. Version 1.06. MSC, 9009 New Trails Drive, The Woodlands, TX 77381, USA.

organic papers

North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Taylor, R., Kennard, O. \& Versichel, W. (1984). Acta Cryst. B40, 280-288.

